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SUMMARY

Bacterial culture was the first method used to describe the human
microbiota, but this method is considered outdated by many re-
searchers. Metagenomics studies have since been applied to clin-
ical microbiology; however, a “dark matter” of prokaryotes, which
corresponds to a hole in our knowledge and includes minority
bacterial populations, is not elucidated by these studies. By repli-
cating the natural environment, environmental microbiolo-
gists were the first to reduce the “great plate count anomaly,”
which corresponds to the difference between microscopic and
culture counts. The revolution in bacterial identification also
allowed rapid progress. 16S rRNA bacterial identification al-
lowed the accurate identification of new species. Mass spec-
trometry allowed the high-throughput identification of rare
species and the detection of new species. By using these meth-
ods and by increasing the number of culture conditions, cul-
turomics allowed the extension of the known human gut reper-
toire to levels equivalent to those of pyrosequencing. Finally,
taxonogenomics strategies became an emerging method for de-
scribing new species, associating the genome sequence of the bac-
teria systematically. We provide a comprehensive review on these
topics, demonstrating that both empirical and hypothesis-driven
approaches will enable a rapid increase in the identification of the
human prokaryote repertoire.

INTRODUCTION

Metagenomic studies (the study of metagenomes by using
high-throughput sequencing directly from a complex eco-

system) appear to be able to replace bacterial culture (1). Indeed,
the first metagenomic studies, which were specifically performed
to study environmental samples, highlighted that 80% of the
bacteria identified by metagenomics or by pyrosequencing target-
ing the 16S rRNA gene had not yet been cultured (1, 2). Because
the term was a misnomer, where “uncultured” was transformed
into “uncultivable,” 80% of bacteria from the environment or
from the human gut microbiota were accepted as being unculti-
vable. Of course, this conclusion is not realistic because all micro-
organisms are susceptible to being cultured; the best route and
proper tools for culturing must be found. One of the major biases
of metagenomic studies is the depth bias (3, 4). Indeed, in complex
ecosystems such as the gut microbiota, which consists of �1012

bacteria per gram of stool, current metagenomic studies are un-

able to detect bacteria at concentrations of �105 bacteria per gram
(4). For example, Salmonella enterica serovar Typhi, which is a
formidable pathogen, is undetectable by current metagenomic
analysis methods (4). Metagenomics and culturomics (diversifi-
cation of culture conditions together with identification by ma-
trix-assisted laser desorption ionization–time of flight mass spec-
trometry [MALDI-TOF MS], to increase the bacterial repertoire)
can detect comparable numbers of species. The complementarity
between culture-dependent and culture-independent studies has
been demonstrated, because only 15% of species detected were
detected concomitantly by the 2 techniques (4–7). Environmental
microbiologists have used culture conditions to mimic the natural
environment of bacteria to culture microorganisms previously
considered uncultivable (8). Indeed, culture efforts and easy iden-
tification through 16S rRNA amplification and sequencing and
then the recent use of MALDI-TOF in routine bacteriology have
caused a dramatic increase in the number of identified species. In
fact, only 1,791 official bacterial species had been recognized in
1980, whereas currently, �12,000 species have been recorded (9).
Recently, culturomics performed in our laboratory greatly partic-
ipated in this effort (Table 1). In addition to the accompanying
large review summarizing the past and current techniques used in
clinical microbiology (10), we propose here a focus on the bacte-
rial identification progresses that allow culturomics, drawing on
environmental microbiologists’ techniques and a rapid method of
bacterial identification by MALDI-TOF MS to dramatically ex-
tend the human gut microbiota repertoire. Finally, we developed
taxonogenomics, a method proposed to include genome sequenc-
ing in addition to classic criteria in order to describe a new bacte-
rial species.

BACTERIAL IDENTIFICATION STRATEGIES

Detection of Growth

Staining. Direct observation of microorganisms has frequently
been the first step in identification. Dark-field microscopy has
been used to visualize spirochetes observed against a black back-
ground (11). Gram staining is the most useful and cost-effective
direct-observation method used in clinical microbiology. The
most significant bacteria that have not been Gram stained include
Mycoplasma, which does have not a cell wall, and Rickettsia and
Chlamydia, which do not stain well (11). In addition, Gram stain-
ing is not constantly a robust method because the genera Bacillus,
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Gemella, and Listeria (12, 13) and certain Gram-positive anaer-
obes (14) can display aberrant Gram staining and appear Gram
variable or Gram negative (15). In fact, in a recent study of the
human gut microbiota, Hugon et al. revealed that electron mi-
croscopy, which is considered a reference method for studying the
bacterial cell wall, allowed the identification of an average of 2-fold
more Gram-positive prokaryotes than did Gram staining (16).
Ziehl-Neelsen staining detects acid-alcohol-resistant bacteria,
such as Mycobacterium spp. or Nocardia spp. (11). Intracellular
bacteria might not be stained by Gram staining; however, detec-
tion of bacterial growth within cells can be identified after Gime-
nez or Giemsa staining for Rickettsia spp., Coxiella burnetii, and
Tropheryma whipplei, or Giemsa staining can be used for Ehrlichia
spp., Anaplasma spp., and Chlamydia spp. (17, 18). Acridine or-
ange can also be used for the detection of bacteria.

4=,6=-Diamidino-2-phenylindole (DAPI) is a fluorescent mol-
ecule that strongly binds to DNA, specifically with adenine and
thymine bases (19). The design of specific probes has allowed the
direct visualization of diverse bacterial species such as C. burnetii
(20), Staphylococcus spp. (21), and Salmonella spp. (22) directly
from clinical samples.

Electron microscopy. Electron microscopy improved knowl-
edge of viruses (23) and bacteria (24), with the assistance of greatly
improved resolution. Nevertheless, electron microscopy has been
used more in bacterial research to observe microorganisms for the
first time, to study the structure and function of cells (25), or by
environmental microbiologists (26–28). Bacterial morphologies
(29) and cell wall structures can be easily observed, and Gram-
negative and Gram-positive types of bacteria can be distinguished
(16). Over the past decade, cryo-electron microscopy techniques,
which can be divided into cryo-electron tomography (to visualize
cell structures at the protein level) (29), single-particle cryo-elec-
tron microscopy (the most commonly used) (30), and electron
crystallography, are techniques based on cryofixation that
emerged from sample preparation steps, which can affect speci-
mens (30). These methods have permitted the exploration of mac-
romolecules and the study of cell architecture as well as observa-
tions of viruses and protein molecules at the molecular level (30).

Microcolony detection by autofluorescence. Naked-eye dis-
crimination of bacterial growth is most likely associated with a
relative delay. Both nondestructive fluorescence-based staining

procedures and microcolony visualization using a scanner can be
used to detect bacterial colonies more rapidly and easily than with
the naked eye (31), notably in environmental microbiology and in
the agroalimentary industry, in which such technologies were first
used to detect food or water contamination (31–33). The expan-
sion of the use of this technique will permit cost reduction. For
example, Asano et al. identified slowly growing lactic acid bacteria
by the microcolony method, using carboxyfluorescein diacetate
(CFDA) staining (31). The strains were detected within 3 days of
incubation, compared with 3 to 6 days using traditional culture
methods. This method was highly discriminative, with results
equal to those with fluorescence in situ hybridization (FISH).
Baumstummler et al. demonstrated the same results by using a
cocktail of 5 fluorescent dyes and a FACSCalibur flow cytometer,
with detection of bacterial contamination of filterable products
that was 3 to 5 times faster than with conventional methods (34).

In clinical microbiology, microscopically observed drug sus-
ceptibility (MODS) testing has been compared with traditional
culture on solid media or automated liquid culture (35, 36). den
Hertog et al. recently proposed an alternative method, initially
using a porous aluminum oxide (PAO) support before transfer to
a selective medium, with detection by using an automated micro-
scope system (FluXXscan) and then a lipid fluorescent probe (Nile
Red) to determine growth at early time points (37). Microcolonies
were first detected after 4 to 5 days, demonstrating that the poten-
tial of this method was at least equivalent to that of MODS or
thin-layer agar assays (37).

Liquid and agar culture media. The turbidity of liquid culture
media can be observed and represents the basis of growth detec-
tion in blood culture bottles for detection of bacteremia in clinical
microbiology. Since 1990, the optimization of commercially avail-
able automated systems has permitted a reduction of the initially
large proportion of false-positive blood culture bottles (38, 39).

The naked eye permits observation of the morphology of col-
onies on solid agar cultures, which can help an experienced mi-
crobiologist to determine the presumptive species group of the
bacterial isolate. The use of blood-based agar facilitates the obser-
vation of the hemolytic ability of the bacterial species, which is
frequently the first step in identification, particularly for strepto-
cocci (11). Nevertheless, the usual rule that the macroscopic as-
pect of the colonies frequently represents the first step in bacterial

TABLE 1 Bacterial species first cultured or first isolated from human samples at URMITE, Marseille, France

Detection method

No. of bacterial species
detecteda

Source and/or references
1st human
case

New
species Total

Isolation of fastidious bacteria 4 23 http://www.mediterranee-infection.com/article.php?laref�258&titer�new-microbes
Isolation of anaerobic species NA 6 96, 97
Isolation of new bacterial species using

16S rRNA sequencing
16 29 47, 53

Other 2 16 http://www.mediterranee-infection.com/article.php?laref�258&titer�new-microbes
MALDI-TOF mass spectrometry in

clinical microbiology laboratory
31 0 42, 80

Culturomics 168 91 4–7, 121; http://www.mediterranee-infection.com/article.php?laref�258&titer�new
-microbes

Total 221 165 386
a NA, not applicable.

The Rebirth of Culture in Clinical Microbiology

January 2015 Volume 28 Number 1 cmr.asm.org 239Clinical Microbiology Reviews

http://www.mediterranee-infection.com/article.php?laref=258&titer=new-microbes
http://www.mediterranee-infection.com/article.php?laref=258&titer=new-microbes
http://www.mediterranee-infection.com/article.php?laref=258&titer=new-microbes
http://www.mediterranee-infection.com/article.php?laref=258&titer=new-microbes
http://cmr.asm.org


identification in routine bacteriology should be reconsidered. Be-
cause MALDI-TOF mass spectrometry permits the rapid testing
of a large number of colonies, Lagier et al. demonstrated that
colonies that are indistinguishable in appearance can be different
bacterial species, particularly for the genus Enterococcus, and this
finding should motivate the comprehensive testing of colonies
(4).

Identification

Classic phenotypic identification. Schematically, different sys-
tem reactivities are available and combined, such as pH-based
reactions; the enzyme profile; carbon source utilization (tetrazo-
lium-based indicators); acid detection; as well as analysis of car-
bohydrate utilization, preformed enzymes, organic products, and
cellular fatty acids (40, 41). The primary tests for the mode of
energy metabolism are oxidase and catalase tests, which can be
easily obtained in a few minutes. Carbohydrate metabolism is an-
alyzed primarily by examining acid production (pH-based reac-
tions). The tested end products of carbohydrate metabolism in-
cluded primarily CO2, acetate, and lactate. Later, diverse tests for
enzymes such as glucuronidase, glucosidase, galactosidase, and
fucosidase were introduced (40). The tests for protein and amino
acid metabolism include the production of indole and H2S; sub-
sequently, tests for gelatin and casein digestion were introduced.
Nitrogen metabolism is highlighted by tests for lysine, ornithine,
arginine decarboxylase, arginine dihydrolase, phenylalanine
deaminase, and urease (40). A breakthrough in the characteriza-
tion of asaccharolytic bacteria emerged with tests for specific aryl-
amidase activities. Regarding lipid metabolism, the primary tests
are those for lipase and lecithinase on egg yolk agar and the diges-
tion of Tween. Tests based on cell wall receptors, including op-
tochin, lysozyme susceptibility, and bile solubility tests, are fre-
quently used for the differentiation of Gram-positive cocci (40).

Many of these phenotypic characteristics can be simultane-
ously tested by using commercial kits and/or automated pheno-
typic systems, with the time to obtain an identification varying
from 4 to 48 h (42). The relatively high cost is related to the re-
agents’ costs and can amount to €4.6 to €12.65 for each identified
bacterial colony (42). Until the MALDI-TOF revolution, these
systems were the “gold standard” used in clinical laboratories
worldwide for bacterial species identification (40).

Molecular tools. (i) 16S rRNA. The development of both mo-
lecular tools and sequence databases has constituted one of the
most important advances of the late 20th century in clinical mi-
crobiology (43). The ability to detect and identify bacterial nucleic
acids has permitted the rapid identification of both cultured and
not-yet-cultivable bacteria (44, 45). In addition, this ability was
also an unquestionable advance in the identification of extremely
fastidious microorganisms, for which conventional biochemical
methods were sometimes difficult (43). The development of the
largest databank, known as GenBank, facilitated this progress.
Janda and Abbot reported that 1,791 valid bacterial species names
were recorded in 1980, whereas 8,168 species were recognized in
2007 and 12,391 are recognized today (http://www.bacterio.net
/-number.html [accessed 1 August 2013]). This rapid increase is
directly linked to the performance of 16S rRNA sequencing (9). In
parallel, for a few years, the increasing number of genome se-
quences available in databases such as the Genomes OnLine Da-
tabase (GOLD) has offered an effective in silico approach for
choosing DNA targets for identification (46).

Before the advent of molecular tools, routine reference bacte-
riology laboratories estimated that 0.5 to 1% of the cultured bac-
teria were unidentified by classic phenotypic identification meth-
ods (47). A universal bacterial detection and identification system,
using a gene present exclusively in bacteria and based on 16S
rRNA gene amplification and sequencing, has been proposed.
This gene was not discriminant for several bacterial species, such
as Rickettsia species (48), Brucella species (49), Streptococcus spp.
(50), Corynebacterium spp. (51), and Bacillus spp. (52).

16S rRNA amplification and sequencing have offered a large
opportunity to describe new bacterial species and cultured bacte-
ria (47, 53–57) and have increased the efficiency of bacterial iden-
tification. Drancourt et al. described phenotypic misidentification
of 58.7% of 138 bacterial species from environmental and clinical
samples identified at the species level by 16S rRNA amplification
and sequencing (53). In a 5-year study, those same authors de-
scribed 27 bacterial species newly determined to be associated
with humans, including 11 entirely new bacterial species (47).
Tortoli et al. estimated a prevalence of unidentified mycobacteria
of �1% (55), and Bosshard et al. described 27 aerobic Gram-
positive rods in an 18-month evaluation (58). In addition, for
identification to the genus level, broad-spectrum PCR targeting
the 23S rRNA gene was used (59). The 16S-23S rRNA gene inter-
genic transcribed spacer (ITS) has great variability in many bacte-
rial species, such as Gram-positive anaerobic cocci, Streptococcus
spp., Bartonella spp., and T. whipplei (60–63).

(ii) rpoB and other genes. For identification to the species level,
the RNA polymerase beta subunit-encoding gene, rpoB, was pro-
posed early as an efficient tool for microbiologists (64). The use of
the rpoB gene has been superior to the 16S rRNA gene for the
identification of Enterobacteriaceae (65), Staphylococcus spp. (66),
Streptococcus spp. and other aerobic Gram-positive species (50),
Mycobacterium spp. (67), Leptospira spp. (68), and Corynebacte-
rium spp. (51) as well as for the identification of spirochetes (69).
The superoxide dismutase (SOD) gene also permits reliable iden-
tification of Streptococcus spp. (70, 71) and C. burnetii (72) to the
species level; the sodA gene was particularly efficient at distin-
guishing different species among nonenterococcal group D strep-
tococci (73). The Tuf gene has better discrimination for coagu-
lase-negative Staphylococcus (74), and the gap gene could be an
alternative for increasing the taxonomical distinction among
Staphylococcus species (75). Molecular identification of intracellu-
lar bacteria could be based on the amplification of the specific gene
used, usually for the detection of these bacteria by real-time PCR.
The targets most often used for real-time PCR are the IS1111
intergenic sequence for C. burnetii, the 16S-23S rRNA intergenic
region for Bartonella, a repeated sequence for T. whipplei, a hypo-
thetical protein (RC0338 gene) for spotted fever group Rickettsia,
and a hypothetical protein (RP278 gene) for typhus group Rick-
ettsia. Sequencing of the 16S RNA gene might be required in some
cases (18, 76, 77), if real-time PCR is noncontributive to bacterial
identification. Other genes could be used for more precise and
discriminant identification of intracellular bacteria, for example,
rpoB for Bartonella species (78) or citrate synthase (gltA), ompA, or
ompB for Rickettsia spp. (79).

The time required for bacterial identification using 16S rRNA
amplification and sequencing is, at a minimum, 24 h, and this
method is �100 times more expensive than MALDI-TOF MS
identification (80). Molecular identification must remain the gold
standard for bacterial identification, particularly when no spectra
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are available in the MALDI-TOF database. Sequencing will allow
corroboration of the MALDI spectra and permit reliable additions
to protein databases (80).

MALDI-TOF MS, a rapid and low-cost identification method.
For 10 to 20 years, automated phenotypic methods were rapidly
developed in clinical microbiology laboratories (81). Neverthe-
less, MALDI-TOF MS, although developed for 3 decades, was
originally used only anecdotally for bacterial identification (82–
84). In 2009, Seng et al. were the first researchers to anticipate the
ongoing revolution in routine clinical microbiology, correctly
identifying 95.4% of 1,660 isolates tested, including 81.4% to the
species level (42). van Veen et al. reported similar results, with
efficient identification ranging from 84.8 to 97.7% at the species
level (85). Bizzini et al. obtained 93.2% correct identifications at
the species level for 1,278 species tested but with a protein extrac-
tion step for 25.6% of these isolates (86). Importantly, this revo-
lution in bacterial identification has been the keystone in facilitat-
ing the design of broad culture studies, including microbial
culturomics studies.

(i) Methods. Three systems, the Andromas database (Andro-
mas SAS, Paris, France), the Vitek-MS platform (bioMérieux,
Marcy l’Etoile, France), and the Bruker Biotyper (Bruker Dalton-
ics, Heidelberg, Germany, in collaboration with Becton Dickin-
son, Franklin Lakes, NJ, USA), are available for MALDI identifi-
cation of microorganisms (81). The MALDI-TOF principle
corresponds to a soft ionization mechanism, which is obtained by
using a matrix, added to the bacterial colonies on metal plates.
Ionization was performed by using a UV laser beam. The mea-
surement of the time of flight into the tube to reach a detector
generated spectra. Spectral comparison with data from the de-
fined database available was automatically performed and permit-
ted identification.

(ii) Effective bacterial identification by MALDI-TOF MS in
clinical microbiology. Coagulase-negative staphylococci and
Staphylococcus aureus are generally well identified by MALDI-
TOF MS (42). Dupont et al. (using sodA amplification and se-
quencing as a reference) and Carpaij et al. (using tuf amplification
and sequencing as a reference), who tested 234 and 62 coagulase-
negative Staphylococcus strains, respectively, reported that 93.2%
to 100% of the strains were correctly identified compared with the
reference molecular technique used (87, 88). All 132 of the tested
Enterococcus species strains were correctly identified by Fang et al.
by MALDI-TOF MS (89). Cherkaoui et al. demonstrated the su-
periority of MALDI-TOF MS compared with the Vitek-2 system
coupled with agglutination tests in identifying 386 beta-hemolytic
Streptococcus clinical strains. All the strains were accurately iden-
tified by MALDI-TOF MS, along with 39% to 92% of the isolates
(90). Friedrichs et al. observed 100% concordant results in iden-
tifying viridians group streptococci by both MALDI-TOF and
conventional methods (91). Nevertheless, discordant results were
observed for the identification of nonenterococcal group D strep-
tococci (92, 93). Neisseria meningitidis and Neisseria gonorrhoeae
were accurately identified by MALDI-TOF MS, as reported by
Ilina et al. (94). Overall, Enterobacteriaceae were accurately iden-
tified by MALDI-TOF MS (85). Degand et al. reported that 549
nonfermenting Gram-negative bacteria from clinical samples
were well identified by MALDI-TOF MS, whereas 9 strains of the
Burkholderia cepacia complex were not identified to the species
level (95). The increasing identification allowed by this method
was demonstrated by 2 studies performed with anaerobes in that

same laboratory. In 2011, La Scola et al. identified 61% of 544
isolates by MALDI-TOF (96). In 2013, the same group, using the
same cutoff, tested 1,325 anaerobes species, with accurate identi-
fication to the species level for 92.5% of the strains (97). Similar
results were observed by Nagy et al., who correctly identified 77%
of the 283 strains tested, and Fedorko et al., who correctly identi-
fied 82% of the 152 isolates, both using a cutoff of �2, the usually
referred-to cutoff, whereas La Scola et al. used a cutoff of �1.9
(96–99).

(iii) Discordant results or remaining challenges in clinical mi-
crobiology. Two primary difficulties with bacterial identification
by MALDI-TOF MS have appeared.

(a) Still-limited databases. For rare species, the lack of spectra
decreases the safety of identification; however, this limitation can
be easily surmounted. In fact, Verroken et al. (100) demonstrated
that interest in an expanded database increased the accurate iden-
tification of Nocardia spp. In the first step, those authors identified
110 species of Nocardia. In the second step, after the implementa-
tion of the database with these 110 previously generated spectra,
those authors identified 43 other strains, with the identification
rate increasing at the genus and species levels from 44 to 88% and
from 23 to 79%, respectively, using this optimized database. The
feasibility of Mycobacterium species identification by MALDI-
TOF MS was well established; nevertheless, incrementation of the
database will be required to increase the correct identification rate
(81). Using an original protocol, El Khechine et al. reported the
accurate identification of �100 different strains of heat-inacti-
vated Mycobacterium tuberculosis and M. avium (101). Couturier
et al. showed that identification of Haemophilus, Actinobacillus,
Cardiobacterium, Eikenella, and Kingella (HACEK) species was
accurate at the genus level for 93 to 100% of isolates with a cus-
tomized database including clinical spectra but that identification
at the species level was efficient for only 66% of the isolates (102).
In 2013, with an optimized database, Powell et al. identified a
larger number of isolates to the species level with MALDI-TOF
MS than with conventional phenotypic methods (86% and 60 to
77%, respectively) (103).

(b) Remaining challenges. Despite the large databases available
for certain genera, there are still discrepancies in the identification
of some species sometimes frequently observed in clinical micro-
biology. One of the major challenges will be to differentiate Strep-
tococcus pneumoniae from Streptococcus mitis by MALDI-TOF
MS, which currently remains inaccurate (104). As another exam-
ple, routinely used protocols do not allow the distinction of Bacil-
lus anthracis and Bacillus cereus, although combination with arti-
ficial neural networks for spectral analysis increased this
discrimination (105). Salmonella spp. were well identified to the
genus level; however, progress should be observed to precisely and
safely determine the subspecies and the serovar levels (106, 107).
Different authors have shown that MALDI-TOF MS was unable to
distinguish Escherichia coli from Shigella spp. (108, 109). Finally,
Pavlovic et al. demonstrated that MALDI-TOF MS did not allow
differentiation between different tested species of Enterobacter
(110).

(iv) Rare and fastidious bacteria and archaea. MALDI-TOF
MS is an identification tool that has permitted the extension of
biodiversity knowledge. In our laboratory, Seng et al. compared a
period using conventional phenotypic tools, annually identifying
a mean of 44 different species, and a period using MALDI-TOF
MS, annually identifying a mean of 112 different species (80).
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Importantly, 77% of the bacterial species rarely reported to be
human pathogens and phenotypically identified were found by
MALDI-TOF MS (80). In addition, among the 128 rarely isolated
pathogenic bacteria during this period, nearly 30% were already
identified by MALDI-TOF MS, and the proportion of these iso-
lates identified by molecular tools decreased significantly in the
last few years (80) with permanent incrementation of MALDI-
TOF databases. MALDI-TOF MS was applied for archaeal species
identification. Dridi et al. reported that Methanobrevibacter
smithii, Methanobrevibacter oralis, Methanosphaera stadtmanae,
and the recently described Methanomassiliicoccus luminyensis
were correctly identified (111). Other rare bacterial species were
correctly identified, including Brucella spp. at the genus level (112)
and Pasteurella spp. (113), Bartonella spp. (114), Francisella spp.,
Leptospira spp. (115, 116), and Legionella spp. (117, 118) at the
species level.

(v) Time-effective and cost-effective method. Mass spectrom-
etry is a method requiring a low level of training and can identify
bacterial strains in a few minutes (i.e., 6 min to 8 min 30 s with an
AutoFlex II system [Bruker Daltonics] and only 1 min 46 s with
the next-generation MicroFlex LT mass spectrometer [Bruker
Daltonics, Heidelberg, Germany]) (119). One individual can eas-
ily test at least 1,000 different colonies per week, as in culturomics
studies (4); this technology has revolutionized approaches in clin-
ical microbiology, completely removing the time requirements of
classic phenotypic identification (i.e., 5 to 8 h for the Vitek-2 sys-
tem and 18 to 48 h for API system identification) (42, 80). Con-
cerns over potential contamination of the culture or polymicro-

bial infection can be easily allayed, permitting both safe bacterial
identification and antibiotic susceptibility testing (42, 119).

MALDI-TOF MS has permitted a dramatic reduction in iden-
tification costs. In fact, the identification cost of 1 bacterial colony
was €1.35 to €1.43 per strain, whereas the costs of classic pheno-
typic identification and 16S rRNA sequencing were €4.6 to €12.65
per strain and €137.7 per strain, respectively, in a same laboratory
(42, 80). Martiny et al. used a MALDI-TOF MS network, most
likely showing the future of shared technical platforms (120).
Over a 1-month period, 1,055 isolates were analyzed in a labora-
tory located 7.5 km away. The median time to identification was 5
h 11 min, which was faster than the identification performed in
parallel using conventional techniques (120). In addition to shar-
ing the costs to acquire a mass spectrometer, these networks per-
mit the sharing of competence regarding updated software and
reducing maintenance costs.

(vi) From clinical to culturomic studies. MALDI-TOF MS,
when used for culturomics studies, highlighted that the incremen-
tation of the spectral database also significantly decreased the use
of molecular biology (Fig. 1) (80). Indeed, between current and
previous stool samples tested in culturomics studies, we observed
a decrease in the number of colonies required to perform 16S
rRNA sequencing to obtain a correct identification (80). We tested
4.5 to 5% of colonies from stool samples of Senegalese, obese
French, and anorexia nervosa patients by 16S rRNA sequencing
(4, 6), whereas only a mean of 1.4% of the other stool samples
recently tested required molecular identification (121).

FIG 1 A MALDI-TOF incrementation database in a 4,000-bed university hospital in Marseille, France. The number of spectra has tripled in 3 years because we
added the spectra of all the bacterial species identified by molecular tools that were cultured from routine laboratory samples and in culturomics studies.
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Antibiotic Susceptibility Testing

Bacterial culture allowed antibiotic susceptibility testing that
might have potential clinical impact. As an example, Whipple’s
disease was empirically treated by trimethoprim-sulfamethoxa-
zole for a long time (122). The first culture of T. whipplei, which is
the causative bacterium, revealed that this bacterium was natu-
rally resistant to trimethoprim and that the combination of doxy-
cycline and hydroxychloroquine was the sole bactericidal treat-
ment (123). Clinical studies demonstrated a better outcome
predicted by these in vitro results (124). In addition, reducing the
culture time for M. tuberculosis is a hot topic with considerable
consequences for clinical outcomes, as a worldwide outbreak of
multidrug-resistant tuberculosis is ongoing (125). As another ex-
ample, the now possible culture of anaerobic species, including
most methanogenic bacteria, aerobically due to the addition of
antioxidants, suggests a great potential to more easily test antibi-
otic susceptibility in all bacteriology laboratories (126). Finally,
the rapid emergence of outbreaks of extended-spectrum beta-lac-
tamases (ESBLs) and carbapenemases in Gram-negative bacteria
will be a challenge for their rapid detection in routine laboratories
to manage such spread. Recently, we demonstrated as a proof of
concept that real-time video imaging coupled with bacterial cul-
ture allowed the detection of such resistance in 3 to 4 h (J. M.
Rolain and D. Raoult, unpublished data).

ENVIRONMENTAL MICROBIOLOGY AS A SOURCE OF MEDIA
FOR CLINICAL MICROBIOLOGY

Empirical Approach

In the environment, it is believed that only 1% of bacterial species
are cultivable by using current techniques (8). Among these spe-
cies, more than half of the known phyla have not yet been isolated
in culture (127, 128). Environmental microbiologists have been
pioneers in resolving the great plate count anomaly, explaining
why only a small fraction of this diverse population has been
grown in artificial media (129, 130). The bacterial cultures ob-
tained by successive dilutions of the original population, to near
extinction of the ability to grow, are named dilution cultures.
These techniques were originally used by environmental microbi-
ologists to explore minority populations (131, 132). These scien-
tists were also pioneers in revitalizing techniques, facilitating the
mimicking of the natural environment to increase the proportions
of cultured bacterial species (129, 133). The most famous example
of empirical culture was recently observed. SAR11, which is an
alphaproteobacterial clade representing, in some regions, 26 to
50% of all rRNA genes in the surface water of the oceans, remained
uncultivated until recently (134). Because of an empirical ap-
proach using sterile Oregon seawater with a mixture of defined
organic and inorganic components, one of the most common bac-
teria was cultured and named “Candidatus Pelagibacter ubique”
(135). The authors of that study suggested that this bacterium
plays a central role in the recycling of dissolved organic carbon to
CO2 in the ocean (136).

Diffusion Chamber and ichip

Chemical compounds enabling increases in the numbers of bac-
terial species that can be cultured remain difficult to characterize;
however, several authors have applied an empirical approach by
using a “diffusion chamber” (137). Kaeberlein et al. introduced a
method of in situ cultivation that bypassed the difficulties of rep-

licating the natural environment caused by usual petri dish-based
approaches (8). The authors placed bacteria in a diffusion cham-
ber that was then introduced back into the environment from
which the sample originated. The diffusion chamber was com-
posed of a mix of agar and a diluted environmental sample, which
was sandwiched between two membranes glued onto a washer
(Fig. 2). This diffusion chamber permitted the cultivation of up to
40% of bacterial cells from a marine sediment environment, com-
pared to 0.05% that grew on a petri dish. A parallel can be drawn
to bacteria that are able to grow only in satellitism with another
bacterial species. Among the most famous examples of microcolo-
nies growing in satellitism around another bacterial species in-
clude Haemophilus influenzae growing around S. aureus secreting
V factor (NAD) (138) or Helcococcus ovis (139).

For culturing of 3 different environment samples, Aoi et al.
compared the performance of standard cultures with that of a
system using a hollow-fiber porous membrane chamber, permit-
ting the rapid exchange of chemical compounds from the natural
environment. A total of 10 to 48% of the isolates were potentially
new bacterial species identified by using the diffusion chamber,
compared to 0 to 4% by using standard culture (140). Gavrish et
al. used a trap formed by two semipermeable membranes (0.2- to
0.6-�m pore size) glue dried and then placed onto moist soil.
Most of the bacteria isolated by the trap were Actinomycetes, in-
cluding members of rare groups such as Dactylosporangium,
Catellatospora, Catenulispora, Lentzea, and Streptacidiphilus
(141). Ferrari et al. proposed a protocol using a polycarbonate
membrane as support for growth and a soil extract as a growing
promoter coupled with FISH for the rapid visualization of micro-
colonies (142).

Nichols et al. designed an isolation chip (ichip) for high-
throughput bacterial cultivation, consisting of several hundred
miniature diffusion chambers, each inoculated with a single envi-
ronmental cell. This technique allowed these authors to demon-
strate that the microbial repertoire of the ichip exceeded the rep-
ertoire afforded by standard cultivation by manyfold, particularly
for Deltaproteobacteria. In addition, the species isolated by using
the ichip method had significant phylogenetic novelty (143).

Signaling Compounds

Quorum sensing is important for interspecies competition in
complex ecosystems (144). Chandler et al. demonstrated this fact
recently in a coculture model using the soil saprophytes Burkhold-
eria thailandensis and Chromobacterium violaceum (145). Bruns et
al. demonstrated that signaling compounds were able to trigger
microbial growth (146). The use of cyclic AMP (cAMP), N-bu-
tyryl homoserine lactone, or N-oxohexanoyl-DL-homoserine lac-
tone at a low concentration of 10 �M permitted an increase in the
microbial recovery of heterotrophic bacteria from the central Bal-
tic Sea (146). The concept of mutualism between bacterial spe-
cies emerged and was significantly highlighted by the role of
siderophores (147–149). D’Onofrio et al. identified 5 new acyl-
desferrioxamine siderophores isolated from Micrococcus luteus
KLE1011, permitting the culture of a substantial number of ma-
rine bacterial species previously considered to be uncultivable
(147).

Evidence that small signaling molecules, such as short peptides,
might be essential factors in initiating the growth of nongrowing
cells has been demonstrated (150, 151). For culture of Psychrobac-
ter sp. strain MSC33, one 5-amino-acid peptide, LQPEV, induced
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the otherwise “uncultivable” strain to grow in standard media
(150). This finding illustrates that deficiencies in nutrient compo-
sition and concentrations in standard media provide remarkable
opportunities for access to culture for some of these species
through identification of the signaling compounds required for
growth and their addition to standard medium formulations (8,
150).

Recently, a model of the microbial life cycle was proposed by
Epstein (152). Dormancy is used by bacteria, for example, spore-
forming bacteria, to survive (153). Epstein hypothesized that dor-
mant bacteria (named scout) would awaken stochastically, with-
out implications of external and environmental signals (152). If
these hypotheses provided partially microbiological explanations,
including the existence of viable but nonculturable cells (153),
then extremely long-term incubations (�3 months) would not
increase the proportion of new species isolation (154). The results
of these experiments strongly suggest that the success in culturing
of new species depends on the amount of cultivation effort rather
than on the length of incubation. Those authors concluded that
the single-cell approach allows the recovery of many more colo-
nies from the same inoculum, as does cultivation by dilution to
extinction (154).

From Environmental to Clinical Microbiology

ichip in clinical microbiology. Recently, Sizova et al. extended the
cultured bacterial repertoire of the human oral cavity specifically
as a result of the growth of anaerobic species (155). Those authors
concomitantly developed in vivo culture methods to specifically
enrich for species belonging to the oral microbiota (minitrap

method), single-cell long-term cultivation to decrease the effects
of fast-growing microorganisms, and modifications of usual en-
richment techniques, notably the use of culture conditions with-
out sugar. Minitrap enrichment was the best method. The com-
plementarity among the different methods was highlighted
because none of the species was isolated concomitantly by the
three methods (155). In addition, 10 different bacterial strains that
were previously detected only by molecular tools, including three
new microbial genera, were cultured (155).

The example of Akkermansia muciniphila. The phylum Ver-
rucomicrobia includes primarily environmental bacterial species
(156). In 2004, Derrien et al. cultured Akkermansia muciniphila
gen. nov., sp. nov., which is a mucin-degrading bacterium in the
human gut, by using dilution of stool samples to extinction in an
anaerobic medium containing gastric mucin as the sole carbon
and nitrogen source (157) and then sequenced its genome (158).
Using a specific 16S rRNA-targeted probe, that same team re-
vealed that this species represented an average of 1% of the bacte-
ria in the human gut, and using pyrosequencing, Dubourg et al.
recently showed that this species may represent 44 to 85% of the
sequences in patients under heavy antibiotic treatment (159). Fi-
nally, this species was detected in lower concentrations in obese
subjects than in controls (160), and an experimental study in mice
recently showed that the use of A. muciniphila could be protective
against obesity and its associated metabolic disorders (161) (Fig.
3). This bacterial species represents a recent example of the rapid
extension of knowledge following pure culture of microorganisms
such as T. whipplei, where a comprehensive understanding of T.

FIG 2 Contribution of environmental microbiologists to improving bacterial culture due to diffusion chambers, allowing the number of colonies cultured to
increase 300 times by mimicking the natural environment (8).
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whipplei infection was acquired only after the first culture (122,
162).

Future challenges. (i) Halophilic bacteria. Halophilic micro-
organisms are encountered in two domains of life: Bacteria and
Archaea (163, 164). The former domain contains primarily low-
halophilic bacteria (marine) or moderately and some extremely
halophilic bacteria, which are limited to a few species of strictly
fermentative and photosynthetic purple bacteria (165). Origi-
nally, halophilic organisms held little interest except for their de-
velopment in salty foods (166). Today, these organisms are used
for the expansion of fundamental knowledge regarding life in ex-
treme environments, biodiversity, and their particular adaptive
physiology as well as knowledge applied in the search for enzymes
with special properties (167). In the environment, their develop-
ment is limited to hypersaline environments, with the conse-
quences of significant evaporation of salt water in regions where
drought conditions and the accumulation of salts are optimal
(165). Only halophilic Archaea have been detected in the human
digestive tract. Indeed, DNA sequences from halophilic Archaea
belonging to the Halobacteriales were recently detected in intesti-
nal biopsy specimens from patients who ingested a salt solution
before a colonoscopic examination (166). Currently, human halo-
philic bacteria remain poorly studied, and their DNAs have never

been detected in the human digestive tract to the best of our
knowledge. This lack of detection could be due to the detection
systems and to culture conditions that target only halophilic Ar-
chaea and that discriminate against halophilic bacteria. A future
challenge would be to grow such bacteria from the human gut.

(ii) Planctomycetes. The first axenic culture of a planctomycete
species was achieved in 1973, and the species was renamed Pirel-
lula staleyi in 1987 (168). In 2001, the phylum Planctomycetes was
proposed, and in 2006, the superphyla Planctomycetes, Verrucomi-
crobia, and Chlamydiae were proposed (169, 170). These bacterial
species represent examples of a small number of microorganisms
isolated in pure culture (2%) compared with the clone sequences
detected by molecular techniques. Schlesner demonstrated that
Planctomycetes species required low-carbon and -nitrogen sources
compared with the fast overgrowth of other bacterial species of
complex ecosystems using N-acetylglucosamine (171). Because of
the absence of the peptidoglycan responsible for �-lactam resis-
tance in Planctomycetes (172), the use of these antibiotics also
facilitates the fight against fast-growing bacterial species, thus as-
sisting in pure Planctomycetes culture (169, 173). Davis et al. found
that extending the incubation time improved the culture of Planc-
tomycetes, including previously uncultured species within the
WPS-1 lineage (174). Using a complex culture medium including

FIG 3 Brief history of Akkermansia muciniphila (2004 to 2014) from its first culture to its relationships with humans, including its suggested role in obesity (157,
158, 160, 161).
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aqueous extracts of spring sediments and rumen fluid, Elshahed et
al. facilitated culturing of the Pirellula-Rhodopirellula-Blastopirel-
lula clade (175). Nevertheless, to the best of our knowledge, no
Planctomycetes pure cultures from human samples have been
achieved to date. However, Planctomycetes species have been de-
tected in the human gut by both pyrosequencing and specific PCR
(176, 177). This culturing will be a challenge for future culturomic
studies, and recent studies regarding possible identification by
MALDI-TOF MS should offer broad perspectives (178).

In conclusion, based on these examples, significant progress in
clinical microbiology has been made by designing specific devices
that permit pure culture of Planctomycetes or extremophile bacte-
rial species, such as halophilic bacteria, to be obtained from hu-
man samples. Based on the model used by Sizova et al. to study
oral microbiota (155), diffusion chambers could be used to study
human stool samples or, more interestingly, duodenal samples
(179). Broad use of gastric mucin will also permit a comprehen-
sive exploration of the diversity of Verrucomicrobia from human
samples.

CULTUROMICS: THE EXAMPLE OF HUMAN GUT
MICROBIOTA

Historical

Culture was the first tool for the exploration of the digestive bac-
terial ecosystem (180–182). Stool samples consist of between 1011

and 1012 bacteria/g of feces by traditional methods (181), corre-
sponding to 60% of the dry mass of feces (183). The gastrointes-
tinal microbiome consists primarily of bacteria belonging to 4
phyla (Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacte-
ria) (184). Most of the species isolated during the 1970s by culture
belonged to the Enterobacteriaceae and Veillonellaceae families,
and before molecular methods were developed, the number of
bacterial species of the gastrointestinal microbiota was estimated
to be �400 (185).

Interestingly, relationships among gut composition, diet, and
geographic provenance have been observed for a long time (181,
186–188). Differences in fecal flora were observed among individ-
uals living in Uganda and British individuals eating a Western diet
(189). Based on these culture studies, Hill and Drasar proposed a
normal colonic flora composition overwhelmingly predominated
by non-spore-forming, anaerobic, rod-like organisms (190).

Since the advent of metagenomics, molecular tools have sup-
planted culture techniques, which were both time-consuming and
difficult (3). Nevertheless, some studies suggested a potentially
imperfect overlap between culture-dependent and culture-inde-
pendent studies. Hayashi et al., comparing the gastrointestinal
microbiota by cloning and sequencing versus anaerobic culture
(191), obtained between 48 and 65 phylotypes for each individual
by cloning and 48 species for 3 individuals, including 3 potentially
new species, by culture. In a previous study, of the 48 species,
�50% were detected only by cloning, 20% were identified by both
techniques, and 30% were identified only by culture (192). A gap
between molecular studies including pyrosequencing of the 16S
rRNA gene and direct observation (16) was highlighted by Hugon
et al., who emphasized that pyrosequencing neglected nearly 15%
of apparently Gram-negative prokaryotes (16). The team of Jef-
frey Gordon also demonstrated that culturing of a large repertoire
of an individual’s gut microbiota by using straightforward anaer-
obic culturing conditions was possible (193). These findings have

motivated the design of large culture studies to complete the iden-
tification of the bacterial human gut repertoire.

Microbial Culturomics

For 3 years, our group used culturing techniques to demonstrate
that culture was not less effective than pyrosequencing for study-
ing the gut microbiota repertoire (4, 6, 7). In this section, we
summarize this approach and our primary findings. The different
challenges that have been identified and their answers are summa-
rized in Fig. 4. Lagier et al. applied culturomics to stool samples
from 2 rural Senegalese subjects and from 1 obese French subject
under different culture conditions (4). Pfleiderer et al. designed
supplementary culture conditions and applied the 70 best culture
conditions to a stool sample from an anorexia nervosa patient (6),
and Dubourg et al. applied these conditions to samples from pa-
tients treated with antibiotics (7). Colony identification was per-
formed by mass spectrometry (MALDI-TOF), permitting rapid
and effective identification (119) (see above). The colonies not
identified by MALDI-TOF MS were tested by 16S rRNA or rpoB
amplification and sequencing (4–7).

Nonselective media. Based on the model proposed by environ-
mental microbiologists, the effects of various growth media, at-
mospheres, and times of incubation were first tested (174). First,
nonselective commercial culture media, such as 5% sheep blood
agar, were used (4). Each gram of stool was diluted in 9 ml of
Dulbecco’s phosphate-buffered saline (DPBS) and was inoculated
into different culture media under various conditions in a dilution
series ranging from 1/10 to 1/1010. Different atmospheric condi-
tions (aerobic conditions, aerobic conditions with 2.5% CO2 or
5% CO2, microaerophilic conditions, and anaerobic conditions)
and temperatures ranging from 4°C to 55°C were tested (10). The
incubation time ranged from 24 h to 2 months to identify slow-
growing bacterial species by using wet compresses in a jar to fight
against agar dryness. After 24 and 48 h and then once per week
after the initial seeding, each agar plate was observed, and new
colonies were identified (4). By applying only these routine cul-
ture conditions, 4 new bacterial species were cultured in the first
work (4). Nevertheless, the high concentration of bacteria in the
human gut limited the contribution of nonselective media. In-
deed, the plates were frequently overloaded despite serial dilu-
tions, and supplementary strategies had to be designed.

Selective culture conditions. Next, the aim was to select and
identify specifically the minority bacterial populations that were
not detected by pyrosequencing due to low threshold concentra-
tions (�105 bacteria/g) (3). Indeed, diverse antibiotics or nonan-
tibiotic inhibitors were used to identify the species that were pres-
ent in smaller quantities in a strategy that we named “kill the
winner,” which was previously used in a model for population
dynamics of phage bacteria.

(i) Antibiotics and other inhibitors. Gram-negative bacterial
growth was inhibited by the addition of colimycin (50 to 100 �g/
ml) or kanamycin (10 �g/ml), and Gram-positive bacterial
growth was limited by the addition of vancomycin (10 to 50 �g/
ml) (4). Squalamine (5 to 15 �g/ml), which is a natural aminos-
terol isolated from the dogfish shark and which presents a large
spectrum of antimicrobial activities (194), was tested. Diverse in-
hibitors usually used in clinical microbiology to facilitate the iden-
tification of enterobacteria were tested, such as bile extract, eosin,
methylene blue, sodium citrate, and sodium thiosulfate (19).

(ii) Active and passive filtration. To decrease the bacterial load
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and to detect bacteria present in low concentrations, syringe filters
with successive pore sizes from 5 to 0.2 �m were used. After each
successive pore size, the filtrate was inoculated in 5% sheep blood
agar and brain heart infusion agar at 37°C in aerobic and anaero-
bic atmospheres, respectively (4). Lagier et al. selected cells based
on their motility. The initial aim was to detect spirochetes from
human stool samples, as previously reported (195). A similar tech-
nique was also recently used to isolate Campylobacter fetus from
bovine preputial samples (196). Passive filtration to select motile
species using companion plate and cell culture inserts with
0.4-�m membranes was also used. The diluted stool with broth
was placed on one side of the membrane, and sterile broth (Lep-
tospira broth or modified Barbour-Stonner-Kelly medium [BSK-
H]) was placed on the other side. Every day, the supernatant was
observed by using a dark-field microscope to detect the eventual
presence of spirochetes. In cases of contamination, the superna-
tant used was inoculated in 5% sheep blood agar using different
growth atmospheres. Among the motile species detected by this
method, 2 new bacterial species (Herbaspirillum massiliense and
Cellulomonas massiliensis) were cultured (4, 197, 198).

(iii) Heat shock. Metagenomic studies of the human gut bacte-
rial repertoire revealed that many species were strictly anaerobes
and belonged to the Clostridiaceae family (6). Most of these species
sporulated. To select these bacteria specifically, heat shock was
applied to the studied stool samples, as previously reported for
Clostridium spp. and Bacillus spp. (199, 200). In the first cul-
turomics work, 2 different protocols (65°C for 20 min and 80°C
for 20 min) were tested. Recently, new strategies were developed,
adding heat shock for a longer time (1 h), followed immediately by
inoculation of the diluted stool sample in a blood culture bottle
(121).

(iv) Phages. Bacteriophages are bacterium-specific viruses that
infect and, in the case of lytic phages, destroy their host bacteria.
Phage therapy was previously used therapeutically in humans
(201) and to eliminate the contamination of food by food-borne
bacterial pathogens (202). Bacteriophages were previously used by
Subramanyam et al. to decontaminate sputum samples instead of
using antiseptics and/or antibiotics before performance of Myco-
bacterium species culture (203, 204). The use of T1, T4, and
phiX174-like E. coli phages was initially undertaken to decrease
the number of E. coli colonies adhering to the urothelium and
causing persistent urinary tract infections (205).

As previously reported for environmental cultures with fast-
growing species, for one of the first studies of stool specimens by
culturomics, petri dishes were overloaded with E. coli, particularly
for enterobacterium-selective media (4). To decrease the growth
of E. coli from these stool samples, T1 and T4 lytic phages were
used as previously reported (205). A 50% decrease in bacterial
growth was observed in the petri dishes, permitting the identifica-
tion of one new species (Enterobacter massiliensis) (4, 206).

Enrichment conditions. (i) Inoculation of stool samples in
blood culture bottles. The components included in blood culture
bottles have increased the growth of certain bacteria, such as Kin-
gella kingae, which is the first arthritis-causing bacterium identi-
fied in young children (207, 208). In the past, this preincubation
also permitted culturing of a new strictly anaerobic bacterial genus
(Phocaeicola abscessus), which was isolated from a human brain
abscess sample (209). To increase the growth of bacterial species
from the human gut, particularly anaerobic bacteria, Lagier et al.
inoculated stool specimens in both aerobic and anaerobic blood
culture bottles for 1, 5, 10, 14, 21, 26, and 30 days before inoculat-
ing the broth onto different agar media. The dramatic efficiency of

FIG 4 Challenges for culturomics and specific answers, including the techniques used to limit the overgrowth of common bacteria and to increase the growth
of fastidious bacteria.
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this blood culture bottle preincubation was highlighted by 50 of 91
new bacterial species being isolated by this technique (4, 6, 7, 121).

(ii) Addition of stool extract. Fresh stool extracts were previ-
ously used extensively as growth promoters for culturing Archaea
including Methanobacterium ruminantium (210), anaerobic spe-
cies from the human gut (211) or from adult swine feces (212),
and E. coli (213). Goodman et al. also used fresh stool extracts to
improve techniques for high-throughput anaerobic culturing of
samples from the human gut (193).

In culturomics studies, a mixture was prepared from several
different volunteer donor stool samples. First, this mixture was
lyophilized and then ground by using a mortar and pestle. The
resulting powder was resuspended in sterile water (2-g pellet in
100 ml of water) and then centrifuged at low speed (5,000 � g for
12 min) to remove cell debris. The recovered supernatant under-
went several treatments: a first sonication (50 �m/4 min and then
70 �m/2 min) was performed by using the Qsonica sonicator
apparatus, followed by treatment in a French press and, finally, a
second sonication (50 �m/3 min and then 70 �m/1 min). The
obtained stool solution was filtered to 0.2 �m. The final culture
media were prepared with 20% and 50% stool filtrate, agar, and
antibiotics (50 �g/ml vancomycin and 50 �g/ml colimycin) (121).

(iii) Addition of rumen fluid. To apply the model developed by
environmental microbiologists, consisting of mimicking the nat-
ural environment of the bacteria to facilitate their growth (8),
culturomics studies were performed by using the nutrient prop-
erties of rumen fluid (193). Originally described as a growth pro-
moter for spirochetes (214), including Treponema hyodysenteriae
and Treponema innocens (215), Elshahed et al. used rumen fluid in
a complex medium, permitting the culturing of 2 new bacterial
species belonging to the Pirellula-Rhodopirellula-Blastopirellula
clade within the Planctomycetes phylum (175). Nottingham and
Hungate also used rumen fluid for the growth of archaeal species
(210). Rumen fluid was also used to isolate cellulolytic Bacteroides
species (216) or to extend the bacterial repertoire in the human
gut by the team of J. I. Gordon (217).

Sixteen different digestives contents from sheep paunches were
used to prepare the rumen fluid. After a first filtration in a funnel,
the suspension was centrifuged (10,000 rpm for 90 min). The
supernatant was then collected, and after 3 successive filtrations
using filters with 0.8-�m, 0.45-�m, and 0.2-�m pore sizes, re-
spectively, rumen fluid was obtained (4). Next, the rumen fluid
was stored at 	80°C and primarily used by adding 5 ml to a blood
culture bottle. In parallel, the inoculation of only rumen fluid in a
blood culture bottle served as a negative control to verify the ste-
rility of the nutrient (4). This substrate permitted the culturing of
17 different bacterial strains not detected by classic culture tech-
niques in the first culturomics work. Overall, among the 91 new
bacterial species identified by culturomics, 30 were identified by
using rumen fluid as a specific nutrient.

(iv) Lipid addition. Some bacteria, such as Mycoplasma spp.,
require the addition of fatty acids for their growth (218). Stool
samples were diluted 1:10 in phosphate-buffered saline (PBS) and
then inoculated with 6 ml of 20% Medialipid (B-Braun Medical
SA, Boulogne Billancourt, France), which is a compound rich in
medium-chain triglycerides and soy oil, in anaerobic blood cul-
ture bottles for 2 to 60 days. The broth was then inoculated in 5%
sheep blood agar under anaerobic conditions at 37°C. Using this
nutrient, Bacillus okuhidensis was first isolated in humans.

(v) Ascorbic acid addition. Ascorbic acid has been used as a

growth factor for Spirochaeta gallinarum, Sarcina flava, Staphylo-
coccus aureus, and several anaerobic species (219). To analyze
these properties, one stool sample was inoculated in a blood cul-
ture bottle with rumen fluid and 500 �g/ml of ascorbic acid (B. La
Scola and D. Raoult, patent pending). In addition, the same con-
centration of ascorbic acid was added to 5% sheep blood agar. This
strategy permitted the culturing of Enterococcus canintestini,
which was first isolated in the human gut (121).

Evolution of culturomics. (i) From 212 to 70 culture condi-
tions. Lagier et al. analyzed 212 different culture conditions (4)
and identified 340 new bacterial species, including 174 bacterial
species first detected in the human gut. Nevertheless, a refined
analysis of the results showed that the 20 more effective culture
conditions permitted the identification of 73% of the 340 bacteria
cultured in their study, in at least 1 of the 3 analyzed stool samples
(4). In addition, all the bacteria identified in the first study were
cultured at least once using one of the 70 culture conditions (4)
and were used for the following studies with various stool samples.
Thus far, between 3,000 and �34,000 different colonies were an-
alyzed in each stool sample (5–7, 121). With 14 stool samples
already reported and completely analyzed by culturomics (4, 5, 7,
121), with a large study using a few conditions applied to 347 stool
samples (220), and with the analysis of �170,000 colonies by
MALDI-TOF MS, 559 bacterial species were cultured, including
281 species from the Firmicutes phylum, 135 from the Actinobac-
teria phylum, 82 from the Proteobacteria phylum, 52 from the
Bacteroidetes phylum, 6 from the Fusobacterium phylum, 2 from
the Synergistetes phylum, and 1 from the Deinococcus-Thermus
phylum (4–6, 121). Among these species, 304 bacterial species
were first described in the human gut, including 59 new bacterial
species (4-7, 121). In addition to the ongoing projects, culturom-
ics has permitted the identification of 717 different bacterial spe-
cies, including 91 new bacteria, 168 species first isolated in hu-
mans, and 155 species already described in humans but first
isolated from the gut.

(ii) Reducing the number of culture conditions. Reducing the
workload will be the first objective to standardize culturomics.
Currently, culturomics requires a large workforce and involves a
considerable workload for the operators (4–7). Therefore, to stan-
dardize culturomics, the number of culture conditions used must
be reduced. Preliminary results selected 18 different culture con-
ditions to standardize culturomics (Table 2). These conditions
were used to monitor bacterial cultures in a liquid medium over a
period of 30 to 40 days, with subcultures on solid medium every 3
days (S. Khelaifia and D. Raoult, unpublished data). Our objective
is to analyze 12,000 colonies for each stool sample because the
number of supplementary bacterial species isolated for each sam-
ple decreased significantly when this number of colonies was an-
alyzed (121).

(iii) Use of culturomics on many samples. Recently, Samb-Ba
et al. performed culturomics (under selection of the more effective
culture conditions) with identification by MALDI-TOF MS for
347 different stool samples from Senegalese subjects with or with-
out diarrhea (220). Patients with diarrhea had a relative decrease
in diversity, particularly for commensal bacterial species, includ-
ing E. coli, several Enterococcus spp., and anaerobes. This funda-
mental study is the first example of the application of culturomics
to a large number of samples.

New bacterial species. Overall, 91 new bacterial species were
cultured, including 58 from the Firmicutes phylum, 21 from Acti-
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nobacteria, 8 from the Bacteroidetes phylum, and 4 from the Pro-
teobacteria phylum (Table 3) (197, 198, 206, 221–247). In an effort
to evaluate the efficiency of culturomics in identifying new bacte-
rial species from the human gut, we compared our results with the
number of bacterial species identified in the human gut and
validated by the International Journal of Systematic and Evolu-
tionary Microbiology (IJSEM) (http://www.bacterio.cict.fr/). Con-
sequently, in 3 years, culturomics has identified 91 of the 121 new
bacterial species (75%) cultured in the gut by the rest of the world.

Future perspectives. (i) Culture of bacterial species consid-
ered unculturable. Diverse recent pyrosequencing studies of the
human gut have revealed that most of the sequences to date were
assigned to unculturable species belonging to the Firmicutes and
Proteobacteria phyla, within the Clostridiales order, and within the
Bacteroidaceae, Rikenellaceae, Ruminococcaceae, Lachnospiraceae,
and Erysipelotrichaceae families (6, 248, 249). Most of these bacte-
rial species are strictly anaerobic species, revealing a future chal-
lenge for culturomics. Strategies including a reduction of the sam-
ple transport time before inoculation and the use of antioxidant
agents such as ascorbic acid and glutathione will dramatically im-
prove the culture of anaerobic bacteria (126).

(ii) Comparison of diversity among individuals. A relative de-
crease in biodiversity was observed for HIV-infected patients and
patients treated with heavy antibiotic regimens for long durations
(5, 121). In addition, the decrease of both biodiversity and bacte-
rial load of the gut microbiota of a patient treated for extensively
drug-resistant (XDR) tuberculosis may have been a reflection of
the general desertification of mucosal microbiota and could have
been one of the substrates of deadly pneumococcemia developed
by this patient (5). The next step for culturomics will be to apply
the 18 more effective culture conditions to more stool samples to
compare biodiversity among individuals. After a comprehensive
approach in culturomics (4–7, 121), it will be exciting to perform
the same studies to compare the repertoires among the different
samples analyzed. It would be an exciting challenge to apply cul-
turomics to samples from patients suffering from diseases associ-
ated with modification of microbiota as metabolic diseases, such
as obesity or malnutrition, including kwashiorkor or marasmus
(250, 251).

From Culturomics to Taxonogenomics

The current classification of prokaryotes, generally called poly-
phasic taxonomy, relies on a combination of phenotypic and ge-
notypic characteristics (252, 253). However, the validity of several
of the criteria used has been debated (254). Currently, the primary
genotypic criteria used in bacterial taxonomy include DNA-DNA
hybridization, G
C content, and 16S rRNA sequence similarity
(252, 255). Although empirically designed, DNA-DNA hybridiza-
tion is considered the gold-standard criterion for estimating the
genetic relatedness between prokaryotes. A DNA-DNA hybridiza-
tion value of �70% is considered the cutoff, permitting the defi-
nition of new species (256, 257). However, various limitations
have been reported, including its elevated cost; the lack of inter-
laboratory and interassay reproducibility, preventing the creation
of a reference database (254); and the cutoff value not being ap-
plicable to all prokaryotic genera, as is the case for members of the
genus Rickettsia (48). Similarly, the16S rRNA sequence identity
discriminatory power varies greatly from one genus to another
(252, 258). Originally, the cutoffs used to classify bacterial isolates
within new species and/or genera were 97% and 95%, respectively
(259); however, the cutoff value at the species level was reevalu-
ated to be 98.7% in 2006 (255). Stackebrandt et al. proposed that
16S rRNA identity values could replace DNA-DNA hybridization
(255, 259). More recently, Meier-Kolthoff et al. proposed that a
threshold of between 98.2 and 99.0% 16S rRNA sequence identity
could be used as a safe alternative to DNA-DNA hybridization
(257). However, 16S rRNA sequencing also exhibits several biases,
notably a high degree of conservation in some genera (49).
Genomic sequences from microorganisms constitute a major
source of genetic information that could provide unequaled data
for the development and identification of genotyping tools as well
as for the design of culture media (260–263). We believe that
microbiogenomics, which consists of sequencing of the genomes
of all microorganisms cultured for which no such sequences are
yet available, will be a major advance in clinical microbiology
(Fig. 5).

Although whole-genome sequencing constituted a revolution
by providing access to the complete genetic information for a

TABLE 2 Description of the 18 different culture conditions used for culturomics standardization

Culture conditions for culturomics standardization

Preincubation in aerobic blood culture bottle with rumen fluid and then 5% sheep blood agar under aerobic conditions at 37°C
Preincubation in anaerobic blood culture bottle with rumen fluid and then 5% sheep blood agar under anaerobic conditions at 37°C
Preincubation in anaerobic blood culture bottle and then 5% sheep blood agar under anaerobic conditions at 37°C
Preincubation under aerobic conditions in Trypticase soy broth and then 5% sheep blood agar under aerobic conditions at 37°C
Preincubation under anaerobic conditions in 5% sheep blood broth and then 5% sheep blood agar under anaerobic conditions at 28°C
Preincubation under aerobic conditions in 5% sheep blood broth and then 5% sheep blood agar under aerobic conditions at 28°C
Preincubation under anaerobic conditions in 5% sheep blood broth and then 5% sheep blood agar under anaerobic conditions at 37°C
Preincubation under aerobic conditions in 5% sheep blood broth and then 5% sheep blood agar under aerobic conditions at 37°C
Preincubation in anaerobic blood culture bottle with stool filtered at 5 �m and then 5% sheep blood agar under anaerobic conditions at 37°C
Preincubation in aerobic blood culture bottle with stool filtered at 5 �m and then 5% sheep blood agar under aerobic conditions at 37°C
Preincubation in aerobic blood culture bottle with 5 ml sheep blood and then 5% sheep blood agar under aerobic conditions at 37°C
Preincubation in anaerobic blood culture bottle with 5 ml sheep blood and then 5% sheep blood agar under anaerobic conditions at 37°C
Preincubation in anaerobic blood culture bottle after thermic shock at 80°C during 20 min and then 5% sheep blood agar under anaerobic conditions at 37°C
Preincubation in anaerobic blood culture bottle with 5 ml rumen fluid and sheep blood and then 5% sheep blood agar under anaerobic conditions at 37°C
Preincubation in aerobic blood culture bottle with 5 ml rumen fluid and sheep blood and then 5% sheep blood agar under aerobic conditions at 37°C
Preincubation under aerobic conditions in brain heart infusion broth with 5% sheep blood and then 5% sheep blood agar under aerobic conditions at 37°C
Preincubation under anaerobic conditions in marine broth and then 5% sheep blood agar under anaerobic conditions at 37°C
Preincubation in aerobic marine broth and then 5% sheep blood agar under aerobic conditions at 37°C
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TABLE 3 New bacterial species and genera isolated from human gut by culturomics and culture conditions used, 2011 to 2014

Phylum New bacterial species

Stool
sample
typea Culture methodc Atmosphere Temp (°C) Reference(s)

Firmicutes Oceanobacillus massiliensis A Active filtration (0.45-�m filter) and then
inoculation in brain heart infusion agar
with 5% sheep blood

Aerobic 37 4, 244

Bacillus timonensis A Brain heart infusion agar with 5% sheep
blood

Aerobic 37 4, 223

Kurthia massiliensis B CNA agar Aerobic,
2.5% CO2

37 4, 232

Kurthia senegalensis B Active filtration (1.2-�m filter) and then
inoculation in 5% sheep blood agar

Aerobic 37 4

Kurthia timonensis B Haemophilus test medium Aerobic,
2.5% CO2

37 4

Anaerococcus senegalensis B Brucella agar Anaerobic 37 4, 226
Paenibacillus senegalensis B Schaedler agar 
 kanamycin and

vancomycin
Aerobic 37 4, 230

Bacillus massiliosenegalensis B 5% sheep blood agar Aerobic 28 4, 239
Clostridium senegalense B Inoculation for 5 days in blood culture bottle

with sheep blood and then 5% sheep
blood agar

Anaerobic 37 4, 228

Peptoniphilus senegalensis B Inoculation for 10 days in blood culture
bottle with sheep blood and then 5%
sheep blood agar

Anaerobic 37 4, 221

Peptoniphilus timonensis B Inoculation for 14 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 4, 229

Ruminococcus massiliensis B Inoculation for 14 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 4b

Dielma fastidiosa B Inoculation for 10 days in blood culture
bottle and then brain heart infusion agar

Anaerobic 37 4, 237

Anaerococcus obesiensis C Inoculation for 5 days in blood culture bottle
with thioglycolate and then 5% sheep
blood agar

Anaerobic 37 4

Brevibacillus massiliensis C M17 agar Aerobic 37 4, 233
Peptoniphilus grossensis C Inoculation for 26 days in blood culture

bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 4, 247

Peptoniphilus obesi C Inoculation for 26 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 4, 222

Kallipyga massiliensis C Inoculation for 26 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 4, 241

Paenibacillus
antibioticophila

D Inoculation for 21 days in blood culture
bottle with cow rumen and sheep blood
and then 5% sheep blood agar

Aerobic 37 7

Pytheasella massiliensis F 5% sheep blood agar during 14 days Aerobic 28 7
Paenibacillus reamassiliensis H Inoculation for 14 days in blood culture

bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Aerobic 37 7

Soleaferrea massiliensis E Inoculation in blood culture bottle and then
5% sheep blood agar

Anaerobic 37 6

Stoquefichus massiliensis E 5% sheep blood agar Anaerobic 28 6
Dorea massiliensis E Inoculation in blood culture bottle with

rumen fluid and then 5% sheep blood agar
Anaerobic 37 6

Holdemania massiliensis E Inoculation in blood culture bottle with
thioglycolate and then 5% sheep blood
agar

Anaerobic 37 6, 246

Clostridium ihumii E Inoculation in blood culture bottle with
sheep blood and then 5% sheep blood agar

Anaerobic 37 6

(Continued on following page)
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TABLE 3 (Continued)

Phylum New bacterial species

Stool
sample
typea Culture methodc Atmosphere Temp (°C) Reference(s)

Bacillus massilioanorexius E Inoculation in blood culture bottle for 1 mo
with rumen fluid and then 5% sheep
blood agar

Anaerobic 37 6, 240

Clostridium polynesiense I Active filtration (0.45-�m filter) and then
inoculation in 5% sheep blood agar

Anaerobic 37 Our unpublished data

Bacillus saudii K Inoculation in blood culture bottle with
sheep blood and then 5% sheep blood agar

Aerobic 37 Our unpublished data

Polynesia massiliensis I Inoculation for 5 days in blood culture bottle
and then inoculation in 5% sheep blood
agar

Anaerobic 37 Our unpublished data

Bacillus jeddahense K Inoculation in blood culture bottle with
rumen fluid and sheep blood and then 5%
sheep blood agar

Aerobic 37 Our unpublished data

Clostridium saudii K 5% sheep blood agar Anaerobic
cabinet

37 Our unpublished data

Clostridium jeddahense K Inoculation in blood culture bottle with
rumen fluid and then 5% sheep blood agar

Anaerobic 37 286

Clostridium
massilioamazoniensis

J Inoculation for 5 days in blood culture bottle
and then Schaedler agar with neomycin 

vancomycin

Anaerobic 37 Our unpublished data

Anaerosalibacter
massiliensis

J Thermic shock (20 min, 65°C) and then
inoculation for 3 days in blood culture
bottle and then 5% sheep blood agar

Anaerobic 37 Our unpublished data

Nosocomiicoccus
massiliensis

L Inoculation for 14 days in blood culture
bottle with rumen fluid and then 5%
sheep blood agar

Aerobic 37 243

Megasphaera massiliensis L Inoculation for 7 days in blood culture bottle
with rumen fluid and sheep blood and
then 5% sheep blood agar

Anaerobic 37 242

Bacillus casamancensis M 5% sheep blood agar Anaerobic 37 Our unpublished data
Clostridium dakarense M 5% sheep blood agar Anaerobic 37 245
Bacillus numidis O Inoculation for 21 days in liquid brain heart

infusion broth with 5% sheep blood then
5% sheep blood agar

Aerobic 37 Our unpublished data

Numidum massiliensis O Inoculation for 21 days in liquid brain heart
infusion broth with 5% sheep blood and
then 5% sheep blood agar

Aerobic 37 Our unpublished data

Bacillus rubiinfantis P Inoculation for 21 days in blood culture
bottle with sheep blood and then 5%
sheep blood agar

Aerobic 37 Our unpublished data

Amazonia massiliensis Q Inoculation in Columbia broth during 30
days and then 5% sheep blood agar

Anaerobic 37 Our unpublished data

Clostridium culturomicsense S Inoculation for 7 days in blood culture bottle
with rumen fluid and then 5% sheep
blood agar

Anaerobic 37 Our unpublished data

Clostridium
jeddahtimonense

S Inoculation for 7 days in blood culture bottle
with rumen fluid and then 5% sheep
blood agar

Anaerobic 37 Our unpublished data

Oceanobacillus jeddahense S Inoculation for 15 days in Columbia broth
medium with 100 g/liter NaCl and then
5% sheep blood agar

Aerobic 37 Our unpublished data

Bacillus jeddahtimonense T Inoculation for 15 days in Columbia broth
medium with 100 g/liter NaCl and then
5% sheep blood agar

Aerobic 37 Our unpublished data

Paraliobacillus massiliensis U Inoculation for 21 days in Columbia broth
medium with 100 g/liter NaCl and then
5% sheep blood agar

Aerobic 37 Our unpublished data

(Continued on following page)
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TABLE 3 (Continued)

Phylum New bacterial species

Stool
sample
typea Culture methodc Atmosphere Temp (°C) Reference(s)

Thalassobacillus massiliensis U Inoculation for 21 days in Columbia broth
medium with 100 g/liter NaCl and then
5% sheep blood agar

Aerobic 37 Our unpublished data

Peptoniphilus ihumii V Inoculation for 21 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 Our unpublished data

Bacillus andreraoultii Y Inoculation for 10 days in blood culture
bottle with sheep blood and then 5%
sheep blood agar

Anaerobic 37 Our unpublished data

Rubiinfantum massiliensis X Inoculation in marine liquid medium during
3 days and then 5% sheep blood agar

Aerobic 37 Our unpublished data

Bacillus
massilioamazoniensis

Y Inoculation for 10 days in blood culture
bottle with sheep blood and then 5%
sheep blood agar

Aerobic 37 Our unpublished data

Clostridium
amazonitimonense

Y Inoculation for 15 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 Our unpublished data

Guyana massiliensis Y Inoculation for 15 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 Our unpublished data

Virgibacillus senegalensis Z Inoculation for 3 days in Columbia broth
medium with 100 g/liter NaCl and then
5% sheep blood agar

Aerobic 37 Our unpublished data

Virgibacillus massiliensis Y2 Inoculation for 21 days in Columbia broth
medium with 100 g/liter NaCl and then
5% sheep blood agar

Aerobic 37 Our unpublished data

Planomicrobium
massiliensis

Z2 Inoculation for 2 days in Columbia broth
medium with 100 g/liter NaCl and then
5% sheep blood agar

Aerobic 37 Our unpublished data

Bacteroidetes Alistipes senegalensis B Schaedler agar with kanamycin 

vancomycin

Anaerobic 37 4, 227

Alistipes timonensis B Inoculation for 5 days in blood culture bottle
and then Schaedler agar with
kanamycin 
 vancomycin

Anaerobic 37 4, 228

Alistipes obesi C Inoculation for 11 days in blood culture
bottle with rumen fluid and then 5%
sheep blood agar

Anaerobic 37 4, 235

Bacteroides timonensis E 5% sheep blood agar for 1 mo Anaerobic 37 6, 291
Bacteroides neonati N Inoculation in blood culture bottle and then

5% sheep blood agar
Anaerobic 37 283

Alistipes ihumii E Inoculation in blood culture bottle with
thioglycolate and then 5% sheep blood
agar

Anaerobic 37 6

Butyricimonas massiliensis G Inoculation for 14 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 7b

Alistipes jeddahensis S Incubation 3 days in PolyViteX chocolate
agar medium

Anaerobic 37 Our unpublished data

Actinobacteria Timonella senegalensis B Inoculation for 14 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 4, 238

Senegalemassilia anaerobia B Inoculation for 5 days in blood culture bottle
and then 5% sheep blood agar

Anaerobic 37 4, 236

Cellulomonas massiliensis B Passive filtration (0.4-�m filter) using
Leptospira broth and then inoculation in
5% sheep blood agar

Aerobic 37 4, 197

Aeromicrobium massiliense B 5% sheep blood agar Aerobic 37 4, 231
Brevibacterium senegalense B Brucella agar Aerobic 37 4, 224

(Continued on following page)
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TABLE 3 (Continued)

Phylum New bacterial species

Stool
sample
typea Culture methodc Atmosphere Temp (°C) Reference(s)

Actinomyces grossensis C Inoculation for 4 days in blood culture bottle
with thioglycolate and then 5% sheep
blood agar

Anaerobic 37 4

Streptomyces massiliensis E Active filtration (0.45-�m filter) and then
inoculation in brain heart infusion agar

Aerobic 37 6

Blastococcus massiliensis E Brucella agar Aerobic 37 6
Collinsella massiliensis G Inoculation for 14 days in blood culture

bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 7

Enorma massiliensis C Inoculation for 4 days in blood culture bottle
with thioglycolate and then 5% sheep
blood agar

Anaerobic 37 4, 234

Enorma timonensis G Inoculation for 14 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Anaerobic 37 284

Corynebacterium ihumii H PolyViteX chocolate agar during 21 days Aerobic with
5% CO2

37 287

Nocardioides massiliensis H PolyViteX chocolate agar during 14 days Aerobic 28 Our unpublished data
Actinomyces polynesiense I Inoculation in blood culture bottle with

coconut milk and then 5% sheep blood
agar

Anaerobic 37 Our unpublished data

Nesterenkonia massiliensis L Inoculation for 14 days in blood culture
bottle with rumen fluid and then 5%
sheep blood agar

Aerobic 37 277

Corynebacterium
jeddahense

K Inoculation for 14 days in blood culture
bottle with rumen fluid and sheep blood
and then 5% sheep blood agar

Aerobic 37 285

Collinsella
massilioamazoniensis

Q Inoculation in marine liquid medium during
30 days and then 5% sheep blood agar

Anaerobic 37 Our unpublished data

Jeddahella massiliensis S Inoculation for 3 days in blood culture bottle
with TSA medium and then 5% sheep
blood agar

Aerobic 37 Our unpublished data

Nigerium massiliensis W Inoculation for 21 days in blood culture
bottle with liquid brain heart infusion
medium, yeast extract, and proteose
peptone and then 5% sheep blood agar

Anaerobic 28 Our unpublished data

Flaviflexus massiliensis X Inoculation in marine liquid medium during
3 days and then 5% sheep blood agar

Aerobic 37 Our unpublished data

Tessaracoccus massiliensis X Inoculation in marine liquid medium during
10 days and then 5% sheep blood agar

Aerobic 37 Our unpublished data

Proteobacteria Enterobacter massiliensis B Use of both T1 and T4 phage and then
inoculation in 5% sheep blood agar

Aerobic 37 4, 206

Herbaspirillum massiliense B Passive filtration (0.4-�m filter) using
Leptospira broth and then inoculation in
5% sheep blood agar

Aerobic 37 4, 198

Microvirga massiliensis B MOD 2 Aerobic 37 10
Dakarella massiliensis R Inoculation for 1 day in blood culture bottle

with rumen fluid and sheep blood and
then 5% sheep blood agar

Anaerobic 37 Our unpublished
datab

a A, N’Diop, Senegal (healthy individual A); B, Dielmo, Senegal, healthy individual; C, French obese patient; D, XDR tuberculosis patient; E, French anorexia nervosa patient; F, Q
fever patient; G, intensive care unit (patient A); H, intensive care unit (patient B); I, Raiatea Island (French Polynesia) healthy individual; J, Amazonian (healthy individual A); K,
obese Saudi (patient A); L, AIDS (patient A); M, Senegalese subjects (684 samples); N, preterm infant with necrotizing enterocolitis; O, Touareg healthy individual; P, Kwashiorkor
malnutrition (patient A); Q, Amazonian (healthy individual B); R, fresh sample from French healthy individual; S, obese Saudi (patient B); T, lean Saudi; U, Amazonian (healthy
individual C); V, AIDS (patient B); W, Kwashiorkor malnutrition (patient B); X, Kwashiorkor malnutrition (patient C); Y, Amazonian (healthy individual D); Z, N’Diop, Senegal
(healthy individual B); Y2, Amazonian (healthy individual E); Z2, N’Diop, Senegal (healthy individual C).
b Bacterial species were not characterized because subculturing was impossible.
c TSA, Trypticase soy agar.
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bacterial strain, this method has not yet been officially accepted as
a source of taxonomic information. However, although this tech-
nique was previously time- and money-consuming, because of
high-throughput next-generation sequencing (NGS) methods,
sequencing of a complete bacterial genome currently requires only
a few days and limited cost (260). As of January 2014, �37,000
bacterial genome sequencing projects have been completed or are
ongoing (http://www.genomesonline.org/). These sequences are
then made available in public databases, facilitating whole-ge-
nome sequence comparisons of new bacterial strains (264, 265).

In 1999, Fitz-Gibbon and House were the first to propose that
the presence or absence of genes within genomes could be used to
describe taxonomic relations among prokaryotes (266). Phylog-
enomic studies, which are based on comparisons of orthologous
genes, have demonstrated good similarity with studies based on
comparisons of 16S rRNA sequences (267). In 2005, it was sug-
gested that the average nucleotide identity (ANI) between two
bacterial species could constitute an effective alternative to DNA-
DNA hybridization (268, 269). An ANI value of �95% between

genomes was proposed by those authors of to be equivalent to a
DNA-DNA hybridization value of �70% (269). In 2009, Richter
and Rossello-Mora (270) and, in 2010, Tindall et al. (252) pro-
posed that ANI could be used to replace DNA-DNA hybridization
in characterizing prokaryotic species, and thus far, this method
has been used to describe several new taxa (271–273). However,
several drawbacks of using genomic sequences for taxonomic pur-
poses have been highlighted. Criticism emerged regarding the
overrepresented sequences from bacterial species of medical or
technological interest in comparison to other species (267), the
lack of sequenced genomes from many strain types (252), the
questionable quality of some genome sequences available in pub-
lic databases (274), and the high proportion (63%) of presumably
less informative draft genomes compared with complete genomes
(275).

However, the rapidly increasing number of available genome
sequences has solved some of these drawbacks (276). Similarly to
other authors, we believe that genome sequences should be sys-
tematically included in the description of new taxa. Thus far, we

FIG 5 Overall vision of the strategy from clinical sample to genomic applications. All the bacteria identified by MALDI-TOF MS and by molecular tools were
compared with our database of species from humans. We determined the genomes of all the bacteria first isolated in humans (microbiogenomics), and all the new
bacterial species were described by using taxonogenomics. All these bacteria were deposited in our collection of bacterial strains (CSUR). GenBank accession
numbers are shown in parentheses.
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have proposed the creation of 45 new bacterial species based on
this strategy (67, 197, 198, 206, 221–247, 277–291), which we call
taxonogenomics (Fig. 5) (292). Taxonogenomics consists of a
polyphasic approach, incorporating both phenotypic and geno-
typic data (292), to describe a new bacterial species. First, we con-
sider bacterial strains that exhibit a 16S rRNA sequence identity of
�98.7% compared with the phylogenetically most closely related
species with standing in nomenclature, as previously recom-
mended (255), as belonging to a putative new species, provided
that this identity value is in the range of identities observed among
validly published species within the same genus. Next, we study
the primary phenotypic characteristics of the bacterial isolate,
such as habitat, Gram staining, electron microscopy, primary cul-
ture, and metabolic characteristics; proteic spectra obtained by
MALDI-TOF MS; and genomic characteristics (genome size;
G
C content; percentage of coding sequences; gene content; gene
distribution in COG categories [293]; numbers and types of RNA
genes; the presence or absence of mobile genetic elements, signal
peptides, and transmembrane helices; and average genomic iden-
tity of orthologous gene sequences [AGIOS]), compared with the
characteristics of the most closely related species with standing in
nomenclature (292). Type strains are also deposited into two in-
ternational culture collections, including our collection (Collec-
tion de Souche de l’Unité des Rickettsies [CSUR], WDCM 875).
All new species isolated by microbial culturomics (4–6) have been,
or will be, described based on this model.

REMAINING CHALLENGES

Despite the spectacular advances in recent years thanks to cul-
turomics, there are yet unsatisfactory results remaining. Many
anaerobic bacteria detected in feces by metagenomic methods re-
main uncultured. Development of new methods for collection,
transport, and culture, including the use of antioxidant agents to
clarify the still unknown part of the gut microbiota repertoire, will
be required (294). The pioneering works of microbial culturomics
that permitted significant extension of the microbial repertoire
(4–6) have as a central fault that these works were not easily trans-
ferred to other laboratories. One of the major future objectives of
our laboratory will be to standardize culturomics for 18 culture
conditions to define comparisons between laboratories precisely.

Due to its low cost for each test performed and its rapid results,
the generalization of the use of MALDI-TOF MS in most clinical
microbiology laboratories will clearly change identification strat-
egies and will facilitate a dramatic rebirth regarding the increase in
the human microbial repertoire (42, 80). Indeed, the ever-increas-
ing number and sizes of databases allow every laboratory to iden-
tify all the bacteria that have been found in the history of humanity
and to discover new bacterial species. In total, 107 different bacte-
rial species are assumed to exist on the surface of the earth, and we
have currently identified slightly more than 104 (295). The condi-
tions that will allow us to significantly increase the knowledge
regarding microbes will continue to require the development of
new cultivation techniques.

CONCLUSION

The technologically driven approach to identification methods in
clinical microbiology has dramatically extended the bacterial rep-
ertoire (296). The systematic use of 16S rRNA or rpoB gene am-
plification and sequencing has allowed us to identify 29 new bac-
terial species and 16 bacterial species first isolated from humans

(47, 53). The second revolution consists of demonstrating the ef-
ficient use of MALDI-TOF MS in clinical microbiology laborato-
ries (42). The seminal publication has been cited �400 times since
2010 (http://apps.webofknowledge.com/). This publication al-
lowed us to identify 30 bacterial species for the first time in hu-
mans (80). Currently, culturomics has identified 717 different
bacterial species, including 91 new bacterial species and 168 bac-
teria first isolated from humans.

In conclusion, by applying an empirical approach driven by
technology, our laboratory has cultured 386 bacterial species
(with �18% of these species being identified in humans) for the
first time from human samples, including 165 new bacterial spe-
cies (Table 1), in the diverse fields of clinical microbiology (10, 96,
97, 296). We believe that culture is essential for discoveries and
could increase our knowledge in the future (294).
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